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We study theoretically orbital effects of a parallel magnetic field applied to a disordered superconducting
film. We find that the field reduces the phase stiffness and leads to strong quantum phase fluctuations driving
the system into an insulating behavior. This microscopic model shows that the critical field decreases with the
sheet resistance, in agreement with recent experimental results. The predictions of this model can be used to
discriminate spin and orbital effects. We find that experiments conducted by A. Johansson et al. are more
consistent with the orbital mechanism.
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I. INTRODUCTION AND RESULTS

Applying a magnetic field to a disordered superconduct-
ing film can drive it into a strong insulating state. This was
observed both when the film is placed perpendicular to the
field, in InO,1–3 MoGe,4 TiN,5 and NbSe,6 or when the film is
in parallel to the field orientation in InO �Refs. 7 and 8� and
Bi.9 While several theoretical models support a
superconductor-insulator transition in the perpendicular
orientation,10,11 the mechanism that drives the transition
when the field is parallel to the film remains unclear.

We study analytically a microscopic model of a disor-
dered superconducting film with magnetic field applied par-
allel to the film, focusing on the induced orbital effects. We
show that the field reduces the stiffness of the superconduct-
ing phase, leading to strong quantum phase fluctuations
manifested as an insulating behavior. We find that the transi-
tion to the insulating phase occurs at a critical field that de-
pends on the superconducting coherence length, �0, the film’s
thickness, d, and the sheet resistance, R� �see Eq. �1��. We
will show that this relation does not depend on the detailed
mechanism that drives the transition, that it allows to deter-
mine experimentally if spin or orbital effects are dominant in
parallel field, and that the measurements of Johansson et al.8

are more consistent with the orbital mechanism.
The emergence of a superconductor-insulator transition in

disordered films induced by a perpendicular magnetic field
is consistent with several theoretical scenarios. A perpen-
dicular magnetic field penetrates the film in the form of vor-
tices. As the field increases, these vortices were predicted to
delocalize and Bose condense leading to an insulating
behavior.10 Conversely, when the field is applied parallel to
the film there are no field-induced vortices. An alternative
numerical work studied the effect of thermal phase fluctua-
tions in a disordered two-dimensional �2D� superconductor.11

The perpendicular magnetic field was shown to destroy
phase correlations between superconducting islands.12–16

Conversely, a parallel spin-exchange field causes the order-
parameter phase and amplitude to vanish abruptly. While ex-
isting theories can account for the qualitative behavior seen
in the perpendicular field orientation, they do not explain the
surprisingly similar observed phenomenology when the field

is parallel to the film.7–9

We study the previously disregarded orbital effect of a
parallel magnetic field applied to a disordered superconduct-
ing film. We find that the field uniformly decreases the su-
perconducting order parameter and reduces its phase stiff-
ness. The reduced phase stiffness enhances quantum
fluctuations of the phase and amplitude, and can drive a
quantum phase transition manifested as an insulating behav-
ior. Our main prediction is that the critical field Bc that marks
the onset of the insulating behavior depends on the critical
temperature Tc, the film’s sheet resistance, R� and thickness
d as

Bc
2

H̃2
=

1

2
�ln�RQ

R�

� − ln 2K0
c� , �1�

where H̃2=
12Tc�0

2�0

��d

�0�B�
�0

R�

RQ
, �=1.78, �0=hc /2e is the flux

quantum, �0 is the density of states, RQ=h / �4e2� is the resis-
tance quantum, �0�B� is the mean-field order parameter in
the presence of a pair breaking field,17 and K0

c is the critical
value of the stiffness coefficient. Three points should be
stressed herein. First, while the insulating behavior can be a
result of either the proliferation of topological phase excita-
tions, or of strong Gaussian phase fluctuations, the detailed
mechanism that drives the transition will merely change the
numerical factor K0

c, as long as dissipation in the cores is
negligible.18,19 Second, we do not consider the effects of a
spin-exchange field, as some of the materials that exhibit the
superconductor-insulator transition, such as MoGe, NbSe,
and Bi, are expected to have strong spin-orbit scattering,
which would smear spin-polarization effects. In addition,
previous numerical work studied the effect of a spin-
exchange field on thermal fluctuations in a nonuniform 2D
superconductor.11 In the absence of a perpendicular field, the
amplitude and phase of the order parameter were shown to
vanish abruptly with increasing spin-exchange field, indicat-
ing a transition into a metallic spin-polarized state,20 contrary
to the strong insulting behavior seen in experiments.7,8 How-
ever, while the spin mechanism is expected to depend on the
thickness, d, only implicitly through Tc, the orbital critical
filed is inversely proportional to d. Hence, by studying the
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dependence of Bc field on the parameters of the system such
as R�, d, and Tc, one can determine which mechanism domi-
nates the transition. Finally, we find that the data of Ref. 8 is
more consistent with Eq. �1� �see Fig. 1�.

To gain insight to how the reduced stiffness can lead to an
insulating behavior we consider as an example its effect on
quantum vortex excitations, corresponding to a vortex loop
in the three-dimensional �3D� classical analog of the system
�see the discussion following Eq. �6� regarding the mapping
the quantum 2D system onto a 3D classical system�. The
energy cost of a circular vortex loop is Eloop	EcoreL /�
+EJL /� ln L /�, where Ecore is the energy per unit length to
suppress the gap in the core of the vortex and EJ is the
energy per unit length to rotate the superconducting phase,
and is determined by the phase stiffness. The logarithmic
divergence in the rotational energy term will be cutoff for
more complicated loop shapes. The entropy of a loop is de-
termined by counting all possible configurations. On a cubic
lattice this can be estimated by Sloop	 ln�2D−1�L/�	L /�. A
parallel magnetic field will reduce the core and rotational
energies of the vortex loops �see derivation leading to Eq.
�4��, leaving the entropy unchanged. As a result, vortex ex-
citations become increasingly favorable and proliferate at a
critical field which, in the absence of dissipation inside the
vortex cores,18,19 marks the onset of the insulating behavior.
In addition to its effects on topological excitations, the re-
duced phase stiffness also enhances Gaussian fluctuation of
the superconducting phase. Loss of phase rigidity due to
strong Gaussian fluctuations give similar estimates for the
transition field as in Eq. �1�, differing by a numerical factor
K0

c.
Figure 1 compares Bc calculated using Eq. �1� with the

data of Ref. 8. The theoretical curve was plotted with K0
c and

�0 used as fitting parameters. The microscopic model used to
obtain Eq. �1� is valid in the disordered limit, for small pair
breaking fields Bc /Hc
 	1. The clean sample of Ref. 8 ex-
hibits a transition into a metal at high magnetic fields. We
identify Bc in the cleanest sample with Hc
 �see asterisk in
Fig. 1�. While our theory is not applicable to the clean
sample, we use this point to determine the relation between
Hc
, Tc, and R�. The resulting Hc
 =1.6� 3

8�

�0

�0d

=1.6�0�3
Tc�0

�d

R�

RQ
is larger than the critical field calculated in

Ref. 17 by a factor 1.6. This may be a result of the finite
thickness of the films used in Ref. 8. The inset of Fig. 1
shows the scaling of the measured Bc with the critical tem-
perature Tc, as expected for a spin mechanism.21 We find that
the data of Ref. 8 is more consistent with Eq. �1� �see caption
of Fig. 1�. We have tried to fit the experimental data of Ref.
9 to our model. Bc obtained using Eq. �1� is in better agree-
ment with the experimental data than the critical field ob-
tained from a linear Bc
Tc or a square-root dependence Bc


�Tc, as naively expected from a spin mechanism, with
weak or strong spin-orbit scattering, respectively. However,
as apposed to InO,8 the distinction between the two mecha-
nisms in Bi �Ref. 9� is quantitative rather than qualitative.

II. MODEL

We study the orbital effects of a parallel magnetic field on
the low-energy excitations of the superconducting film. We
consider the microscopic action of a quasi-2D superconduct-
ing film in the presence of a parallel magnetic field, obtained
from the BCS Hamiltonian by a Hubbard-Stratanovich trans-
formation followed by an expansion around the saddle
point.22 Close to the critical temperature, in the limit �0
�� ,Dq2�T, the action obtained in this way is the time-
dependent Ginzburg Landau. Conversely, in the low-
temperature limit, T�� , Dq2��0, this yields23–26

S = �0�0�B�2� ddxdy�
−d/2

d/2

dz��2

2
�ln �2 − 1� + �0

2����2

+ � ��

v�
�2� + 2�0

2�2��� −
2e

c
A�2

+ � ��

v�
�2�� , �2�

where d is the film thickness, v�=��3� /2�D�0 is the ampli-
tude velocity, v�=��D�0�2dVc�0+1� is the phase velocity,
�0

2=�D /8�0, Vc�2�e2d is the Fourier transform of the
short-range Coulomb interaction due to external screening,
�0 is the density of states, D is the electronic diffusive con-
stant, and the superconducting order parameter is parameter-
ized as ��B�=�0�B��ei�, with �0�B�, the mean-field solu-
tion, in the presence of the pair breaking parallel field.17

We ignore dynamic fluctuations of the electromagnetic
field. This corresponds to assuming an infinite penetration
depth of the magnetic field, and valid in the limit of very thin
films. In the London gauge the uniform part of Eq. �2� is

Suni = �0d�0
2�B�� d2rd� �2

2
�ln �2 − 1� + �2 B2

H̃2� , �3�

where H̃2=
12�0�B�
�De2d2 . Taking �=���, and choosing � to elimi-

nate the third term in Eq. �3�, we obtain
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FIG. 1. Circles indicate the measured Bc

2 in units of Hc

2

= �1.6�2�0
23Tc�0 / ��d�R� /RQ versus the normalized resistance per

square, R� /RQ, taken from Ref. 8. Here Tc is obtained from an
independent measurement. The clean sample of Ref. 8 �marked by
an asterisk� exhibits a transition into a metal at high magnetic fields.
We identify Bc in the cleanest sample with Hc
. The black and gray
lines mark a fit of Eq. �1� to the data, for ��Bc� and ��B=0�,
respectively, using K0

c and �0 as fitting parameters. K0
c determines

the maximal resistance films that exhibit a superconducting phase.
The fitting values are K0

c =0.37, and �0	4.8�1033 erg−1 cm−3. Es-
timates for K0

c based on the proliferation of vortex loops give
0.46	K0

c 	0.75 �see Fig. 3�. �0 inferred from typical carrier den-
sities in amorphous InO is �0�1.4�1033 erg−1 cm−1. Inset: The
measured Bc /Tc versus R� /RQ. A transition driven by spin-
exchange effects would imply that the ratio Bc /Tc be independent of
R�. Here, we find a large scattering of the data. Moreover, in the
presence of spin-orbit scattering, increasing the disorder �large R��
would enhance spin-orbit scattering, resulting in a larger Bc,
whereas the data of Ref. 8 show the opposite tendency.
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S = �0d�0�B�2e−2�B2/H̃2�� dxdyd���2

2
�ln ��2 − 1�

+ �0
2�����2 + � ���

v�
�2� + 2�0

2��2����2 + � ��

v�
�2�� .

�4�

Minimizing Eq. �4� with respect to �� yields26 �MF

=�0�B�e−B2/H̃2
.

Motivated by existing theoretical models that stress the
role of phase fluctuations as the cause of the insulating
behavior,10,11 we concentrate on the phase action in Eq. �4�.
Rescaling the spatial and imaginary time coordinates as r

→r��0�B�
D , and z=�0�B�, respectively, the phase action of

Eq. �4� can be written as

S��� =
K0

2
� d2rdz�����2 +

��z��2

N�
2 � , �5�

where

K0 =
��0dD

2
e−�De2B2d2/�6�0�B�� =

RQ

2R�

e−2B2/H̃2
, �6�

is the stiffness coefficient and N�= pFd is the number of
transverse channels. Here we have used dVc�0	e2d2mpF

= e2

vF
�pFd�2��pFd�2. The stiffness coefficient determines the

action of twisting the phase of the order parameter. When
K0�1, the superconducting phase is rigid. When K0�1 the
phase is strongly fluctuating. Hence, there exists a critical
value K0

c that marks the onset of strong phase fluctuations,
whose exact numerical value depends on the details of the
transition. From Eq. �6�, this implies a critical parallel mag-
netic field, given by Eq. �1�.

Equation �5� and �6� show that the parallel magnetic field
reduces the phase stiffness. As a result, thermal and quantum
phase fluctuations are enhanced. Close to the critical tem-
perature, or for a sufficiently large pair breaking field,
�0�B��T, thermal phase fluctuations dominate. In this limit
the reduced phase stiffness can drive a Kosterlitz-Thouless
phase transition. The large number of normal excitations in
this limit would manifest as a metallic behavior in the disor-
dered phase. In this manuscript, we restrict our analysis to
small pair-breaking fields or sufficiently low temperatures,
such that the condition �0�B��T is met. In this limit quan-
tum phase fluctuations dominate and the reduced stiffness
can drive a 3D XY transition �see discussion below�. As nor-
mal excitations are scarce in this limit, the loss of phase
coherence would result in an insulating behavior, in agree-
ment with experimental observations.7,8

III. ESTIMATE OF K0
c

While the critical field in Eq. �1� depends on the details of
the transition only through K0

c, this numerical factor becomes
increasingly important in the limit R�→RQ. Equation �1�

shows that K0
c determines the limiting value of R� /RQ for

which Bc→0, and the superconducting phase disappears.
To estimate the value of K0

c we study the partition func-
tion of the quantum-mechanical system whose low-energy
excitations are described by Eq. �5�. The partition function
takes the form of a sum of imaginary time transition
amplitudes.27 In the path-integral formulation of quantum
mechanics, these transition amplitudes are calculated by
summing over all possible paths. The path is determined by
specifying the state of the system in finely spaced imaginary
time intervals. Since Eq. �5� describes the behavior of the
system at time intervals ��1 /�, the quantum-mechanical
partition function formulated in this way has the same form
as a classical partition function of a three-dimensional lay-
ered system with interlayer separation of �	1 /�. Hence,
the microscopic phase action of Eq. �5� is in the universality
class of the anisotropic 3D XY model, where the anisotropy
is a result of the renormalization of the phase velocity due to
Coulomb interactions.

The system described by the 3D XY model undergoes a
transition between an ordered phase �superconductor� and a
strongly fluctuating phase �insulator�. Different mechanisms
can drive the system into a strongly fluctuating phase, in-
cluding strong Gaussian fluctuations and the proliferation of
topological excitations. Estimates based on the Lindeman
criterion give K0

c up to a numerical factor which is usually
determined experimentally. A more accurate estimate can be
done based on the proliferation of vortex loops, using a 3D
generalization of the Kosterlitz-Thouless scaling
procedure.28–31 We note that the critical exponents inferred
from the 3D XY model are consistent with few experimental
results.9

Previous works calculated the critical stiffness, K0
c, for a

phase only 3D XY model, Eq. �5�.30,31 The resulting K0
c im-

plies that films with R� /RQ�0.64 should not exhibit a su-
perconducting phase. Conversely, the data of Ref. 8 show
that a transition persists for R� /RQ�1.31. Moreover, the
phase only model is applicable to inhomogeneous systems
such as Josephson-junction arrays. In a homogenous system
such as a superconducting film, however, a vortex excitation
can only occur once the superconducting amplitude is locally
suppressed. We solve the flow Eqs. �7� and �8�, with cor-
rected initial conditions to account for both the phase rota-
tion and the amplitude suppression inside the vortex core
�see the discussion following Eq. �8��. The critical bare
physical parameters are the initial conditions that flow to the
critical point of Eq. �8�. The microscopic action �Eq. �4��
allows to express these critical parameters in terms of mea-
surable quantities, such as R� and B.

The large number of perpendicular channels, N��1, in
quasi-2D films generates a strong anisotropy between the
spatial dimension and the imaginary time dimension, Eq. �5�.
This strong anisotropy in the stiffness coefficient introduces
a crossover scale a�=�0N�. The scaling of the phase stiffness
and vortex loop fugacity in the 3D XY model can be obtained
in two regimes. At small distances a	a�, dominant excita-
tions are found to be rectangular loops, cutting single planes
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�Fig. 2�a��.32 The scaling equations at these scales are
quasi-2D,31

dKl
2D

dl
= − 4�3Kl

2Dyl
2D,

dyl
2D

dl
� 4 − 2�Kl

2D�1 + U�0�N�
−2el

2
��yl

2D, �7�

where l=ln a is the running scale, and Kl
2D and yl

2D are the
quasi-2D renormalized stiffness and fugacity, respectively.
Here U�0�=�q,�4� / �q2+�2 /N�

2 � is the phase propagator,
and the sum is cutoff at the effective core size that accounts
for the crinkling of the vortex loops.31 At larger distances a
�a� the system is no longer sensitive to the anisotropy, and
dominant excitations are multiplane vortex loops �Fig. 2�b��.
In this regime, the renormalized Kl�

2D and yl�
2D of Eq. �7� at

l�=ln�a� /a� are used as initial conditions for the isotropic
scaling equations for multiplane loops,30

dKl

dl
= Kl −

4�3

3
ylKl

2,

dyl

dl
= �6 − �2Kl�1 − x ln Kl��yl. �8�

Here x=0.6 is the self-avoiding random-walk exponent. It
accounts for partial cancellation of the Biot-Savart-type in-
teraction in complicated loop geometries.30,33

We calculate the initial conditions of Eq. �7� for a homog-
enous system, with both phase and amplitude fluctuations.
The bare value of the stiffness coefficient is31 K0

2D=K0 /
�1+ �2K0�−1�, with K0 given by Eq. �6�. The bare fugacity of
a vortex loop is y0

2D=exp�−S j −Sc�, where S j and Sc are the
a self-rotational and core actions, respectively. Previous
works calculated S j for a phase only model.31 The self-
rotational action of the smallest rectangular loop was found
to be S j =�2K0 / �1+ �2K0�−1�. Here we add an estimate for
Sc, calculated from Eq. �4�, using a variational method. The
anisotropy between the spatial dimension and the imaginary
time dimension introduces two possible excitations: a vortex,
manifested as a rotation of the phase in the x-y plane, and a
phase slip which is the corresponding rotation in the x- or
y- planes. A vortex loop in the 2+1-dimensional world is a
complicated combination of vortex and phase slips segments.
To calculate the core action of such a multiplane excitation,
we first determine the action of vortex core of unit volume

r0
2 /�MF, and of a phase slip of unit volume r0�0 /�MF. We

choose the following trial function for a phase slip and a
vortex, respectively:

�ps = arctan�v�

x
�, �ps = min�� x

r0
�2

+ ��MF�2,1� ,

�v = arctan� y

x
�, �v = min�x2 + y2

r0
2 ,1� . �9�

Identifying the part of the action �Eq. �4�� that corresponds to
��1 as the core action, we minimize this expression with
respect to the core size, r0. The resulting core actions of unit
volume are

Sc
ps = K0���

6
+

�

2

1

N�

� ,

Sc
v = K0�1 + 3�

4
� , �10�

where K0 is given by Eq. �6�. In quasi-2D films with N�

�1, rectangular loops dominate.32 The smallest rectangular
loop has �0 unit sides of circulation segments in the  direc-
tion and 2�0 sides of circulation pointing in the x-y plane. As
a result, the bare core action of a rectangular loop is Sc
=2Sc

v+4Sc
ps.

The bare critical stiffness, K0
c�N��, identified as the initial

condition derived for the phase and amplitude model �Eq.
�4�� that flow to the critical point of Eq. �8� is plotted in
black in Fig. 3. The same quantity calculated for a phase
only model is plotted in gray. The initial conditions corre-
sponding to phase and amplitude fluctuations give 0.46
	K0

c�N��	0.75, for 10	N�
2 	104. This implies that for the

physically realized values of N� a transition could occur up
to R� /RQ�1.08, compared to R� /RQ�0.64 found for the
phase only model. Hence, the estimates for K0

c�N�� based on
the phase and amplitude model are more consistent with the
data of Ref. 8 that show a transition in samples with
R� /RQ�1.31. Our estimates of Sc neglected the possible
crinkling of the vortex loops. These would result in a larger
core action, and therefore a larger range of R� /RQ that ex-
hibit a transition.

τ

x
yα

a > ξ N⊥a < ξ N⊥

(a) (b)

FIG. 2. �Color online� The critical bare stiffness was calculated
assuming: �a� quasi-2D rectangular loops �Ref. 32� at scales a
	�N�, and �b� multiplane loops at scales a��N�.

0.0001 0.001 0.01 0.1

0.5

1

N⊥
−2

K
0c

FIG. 3. The critical stiffness, K0
c, versus the anisotropy param-

eter, N�
−2= 1

�pFd�2 , calculated using Eqs. �7� and �8�, with the cor-
rected initial conditions including both amplitude and phase fluc-
tuations �black curve� and the phase only initial conditions �gray
curve�. We find that K0

c derived for the phase and amplitude initial
conditions is more consistent with the experimental data of Ref. 8
�see discussion following Eq. �8��.
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IV. SUMMARY

We study the previously disregarded orbital effect of a
magnetic field applied parallel to a superconducting film. We
find that the parallel field reduces the phase stiffness and
leads to strong phase fluctuation at a critical magnetic field
that depends on the film’s sheet resistance, Eq. �1�. This pre-
diction does not depend on the details of the transition, it
allows to experimentally determine if spin or orbital effects
drive the transition in the parallel orientation, and it shows
that the data of Ref. 8 are more consistent with the orbital
mechanism �see Fig. 1�. A quantitative estimate for the tran-
sition field depends on the detailed process by which strong
phase fluctuations lead to an insulating behavior. In this
manuscript we consider as an example the proliferation of
topological excitations as a possible mechanism. We map the
microscopic action of the 2D film onto the 3D XY model. By

solving the scaling equations derived for the 3D XY model31

with corrected initial conditions to account for both ampli-
tude and phase fluctuations, we get a better agreement with
the data of Ref. 8. We note that the phenomenology of an
insulating behavior induced by strong phase fluctuations can
be generalized to other mechanisms that reduce the phase
stiffness in a continuous fashion including impurity concen-
tration and changing the thickness, as long as dissipation in
the cores can be neglected.
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